If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x^2=2=14
We move all terms to the left:
1/3x^2-(2)=0
Domain of the equation: 3x^2!=0We multiply all the terms by the denominator
x^2!=0/3
x^2!=√0
x!=0
x∈R
-2*3x^2+1=0
Wy multiply elements
-6x^2+1=0
a = -6; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-6)·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-6}=\frac{0-2\sqrt{6}}{-12} =-\frac{2\sqrt{6}}{-12} =-\frac{\sqrt{6}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-6}=\frac{0+2\sqrt{6}}{-12} =\frac{2\sqrt{6}}{-12} =\frac{\sqrt{6}}{-6} $
| -1/3(x+6)^2-4=0 | | 3x-5x-1=17 | | 3(4-5x)=18 | | 19683=x3 | | 4x^2+6x+810=0 | | 413.82=160+0.98x | | 19683=x2 | | 3(d-13)=9 | | -3(3y+1)-7=-6(y+4)+3y | | Y=80-3(y-15) | | t/4-19=-17 | | 2^2t=200 | | -2(4+y)-6=22 | | x^2+13x+17=6x+5 | | x^2+13x+17=6x+15 | | 11.8+x-8.2=4.1 | | -32=7-x | | 5^(2x)=1/25 | | 30=26-2x | | 2(6n+1)=5n+23 | | 6=2w/5-9 | | 0.3m+1.1=0.4 | | 6x-15=4x-9 | | x^2+7x+4=3x+1 | | 7x-22=4x-22 | | 4(2x-5)2^=16/25 | | 6x+21=3(3x+3) | | x/4+2=2 | | 2(n-3)12=9 | | 42+4x=x | | 5x+2x-3=8x | | 2x-6=4x-4 |